
SOME REMARKS TO THE FORMAL AND LOCAL THEORY OF

THE GENERALIZED DHOMBRES FUNCTIONAL EQUATION

LUDWIG REICH AND JÖRG TOMASCHEK

Abstract. We are looking for local analytic respectively formal solutions of
the generalized Dhombres functional equation f(zf(z)) = ϕ(f(z)) in the com-

plex domain. First we give two proofs of the existence theorem about solutions
f with f(0) = w0 and w0 ∈ C? \E where E denotes the group of complex roots

of 1. Afterwards we represent solutions f by means of infinite products where

we use on the one hand the canonical convergence of complex analysis, on the
other hand we show how solutions converge with respect to the weak topology.

In this section we also study solutions where the initial value z0 is different

from zero.

1. Introduction

We study the generalized Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

in the complex domain. The function ϕ is known and we are looking for local
analytic or formal solutions f of (1.1). The original Dhombres equation, which was
inaugurated by Jean Dhombres in the real domain, see [2], is given by

f(xf(x)) = f(x)2.

In the complex domain equation (1.1) was introduced by L. Reich, J. Smı́tal and
M. Štefánková in [3]. They were looking for non constant solutions f of (1.1) with
f(0) = 0. In a subsequent paper, namely in [4], the authors discussed solutions
f with f(0) = w0 where w0 is a complex number different from zero and also no
complex root of unity. Therefore it is used that if f(0) = w0 and f is non constant
a function g with g(z) = ckz

k+ck+1z
k+1 + . . . and k ∈ N, ck 6= 0 can be established

such that f(z) = w0 + g(z). Substituting this representation of f in (1.1) leads to
the transformed generalized Dhombres functional equation

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))

where the function ϕ̃ is computed by ϕ(y) = w0 + ϕ̃(y − w0) and hence it is given
by ϕ̃(y) = wk0y + d2y

2 + . . . which can be shown by comparing the coefficients of
(1.2). In [4] Proposition 2 on page 824 is proved. We will denote Proposition 2 by
Theorem 1.1. By Γ1 we denote the set of all formal series beginning with z.

Theorem 1.1. Let w0 be a complex number different from zero and no root of
unity, and let the function ϕ̃ be given by ϕ̃(y) = wk0y

k+ . . . for a k ∈ N. Then there
exists a unique function g̃0 ∈ Γ1 such that the set of non constant soutions g of

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))
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in C[[z]] is given by

Lϕ̃ =
{
g|g(z) = g̃0(ckz

k), ck ∈ C?
}
.

Then the set Lϕ̃ is a subset of C[[zk]]. Furthermore equation (1.2) has a unique
solution g such that g(z) = ckz

k + . . ., for every ck ∈ C?.

In the following section we want to give two alternative proofs of Theorem 1.1 like
it is suggested in [4]. In the third section we investigate solutions of the generalized
Dhombres functional equation where infinite products are involved. There we also
investigate solutions with initial value z0 6= 0, that means solutions f of (1.1) where
f(z0) = w0 and z0 6= 0.
Before we start, we want to explain our notations, we use the same notations which
are used in [4], and therefore we give the following definition. An introduction to
the ring of formal power series can be found in the book of H. Cartan [1].

Definition 1.2. By

C[[z]] =
{
F |F (z) = β0 + β1z + β2z

2 + . . .
}

with βν ∈ C for ν ≥ 0 we denote the set of formal power series. For a series
F ∈ C[[z]] the order of F is defined by ordF := min{ν ∈ N|βν 6= 0} and one sets ∞
for the order of the trivial series. For F,G ∈ C[[z]] we use F (z) ≡ G(z) (mod zl) if
ord (F −G) ≥ l. We have

C[[zk]] = {F |F ∈ C[[z]], F (z) =
∑
ν≥0

βνz
ν , βν = 0 if ν 6≡ 0 (mod k)}

for k ∈ N. A series F ∈ zC[[zk]] has the representation F (z) = β1z + βk+1z
k+1 +

β2k+1z
2k+1 + . . .. We also need Γ = {F |F ∈ C[[z]] and ord F = 1}, and (Γ, ◦) is the

group of invertible formal power series with respect to substitution ◦ in C[[z]]. Then
the set Γ1 =

{
F |F ∈ Γ and F (z) ≡ z (mod z2)

}
is a subgroup of (Γ, ◦). Finally we

define

C(k)[[z]] = {F |F ∈ C[[z]] with F (z) =
∑
ν≥0

cνz
ν where cν = 0 if ν 6≡ 1 (mod k)}

which leads to Γ(k) = Γ ∩ C(k)[[z]] and Γ
(k)
1 = Γ1 ∩ C(k)[[z]]. The set UC[[z]] defined

as UC[[z]] = {F |F ∈ C[[z]] und F (z) ≡ 1 (mod z)} is a subgroup of all multiplicative
units in C[[z]]. By C? we denote the set C \ {0}.

2. Alternative Proofs

Before we start with our first proof of Theorem 1.1 we have to provide the
following theorem which deals with linearizations. For the definition of a Siegel
number we refer the reader to [5].

Theorem 2.1. Let the function φ ∈ Γ, φ(z) = λz + ξ2z
2 + . . . be given.

(1) If λ ∈ C? \E then there exists exactly one solution Sφ ∈ Γ1 of the lineariza-
tion equation

(2.1) φ(S(z)) = S(λz).

(2) If the function φ is local analytic in a sufficiently small neighbourhood of
zero and if |λ| 6= 1 or λ is a Siegel number, then also Sφ is local analytic in
a sufficiently small neighbourhood of zero.

(3) If φ ∈ Γ(k) then for every solution Sφ we have Sφ ∈ Γ(k).
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The proof of the first and second part of Theorem 2.1 can be found in [5] on the
pages 157 - 174. The third part is proved in [4] on page 823.
Now we want to prove Theorem 1.1 and therefore we use the suggestions which are
provided in Remark 2 in [4].

First proof of Theorem 1.1. The complex number w0 is not zero and no root of
unity and hence also the complex number wk0 for a natural number k is no root of
unity. According to Theorem 2.1 we consider the linearization equation

ϕ̃(S(z)) = S(wk0z).

Then there exists a solution Sϕ̃ of (2.1) such that Sϕ̃ ∈ Γ1 and such that

ϕ̃(Sϕ̃(z)) = Sϕ̃(wk0z)

holds. In this equation we substitute S−1ϕ̃ (z) for z and this substitution leads to
the equivalent expression

ϕ̃(z) = Sϕ̃(wk0S
−1
ϕ̃ (z)).

This representation of ϕ̃ is substituted in the transformed generalized Dhombres
functional equation (1.2) g(w0z + zg(z)) = ϕ̃(g(z)). Then we get

g(w0z + zg(z)) = Sϕ̃(wk0S
−1
ϕ̃ (g(z)))

which becomes equivalent to

S−1ϕ̃ (g(w0z + zg(z))) = wk0S
−1
ϕ̃ (g(z)).

Then we define the function h as h := S−1ϕ̃ ◦ g and hence we obtain

h(w0z + zg(z)) = wk0h(z).

Using the representation g(z) = Sϕ̃(h(z)) leads to

h(w0z + zSϕ̃(h(z))) = wk0h(z).

The function Sϕ̃ is the uniquely determinded solution of (2.1) such that Sϕ̃(z) =
z + . . .. We define the function A as Sϕ̃(z) = A(z) = z + . . . and therefore we get

h(w0z + zA(h(z))) = wk0h(z).

Next we consider a function R with order equal to one such that h(z) = R(z)k

holds. This expression is substituted in the equation above and this leads to

R(w0z + zA(R(z)k)))k = wk0R(z)k.

After taking the k − th root the equation

R(w0z + zA(R(z)k)) = εw0R(z)

where ε has to be determinded, remains. Let the function R be given by R(z) =
r1z+r2z

2 + . . . with r1 6= 0, then R(z)k = rk1z
k+ . . . and zA(R(z)k) = rk1z

k+1 + . . ..
A detailed discussion of the left hand side of this equation results in R(w0z +
zA(R(z)k)) = r1w0z+. . ., while the right hand side has the representation εw0R(z) =
εw0r1z + . . . where r1 6= 0 and w0 6= 0 and hence ε has to be equal one. Altogether
we have

R(w0z + zA(R(z)k)) = w0R(z).

Next we substitute R−1(z) for z and so we get

R(w0R
−1(z) +R−1(z)A(zk)) = w0z.
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Defining the function Q as Q(z) := R−1(z) then we know, because we suppose that
r1 6= 0, that Q(z) = q1z + q2z

2 + . . . and the equation above is equivalent to

(2.2) (w0 +A(zk))Q(z) = Q(w0z).

In a next step we show that the set of solutions of (2.2) is given by

{Q(z) | Q(z) = q1Q
0(z), q1 ∈ C?}

where Q0 ∈ Γ1 is the uniquely determinded solution of (2.2) and Q0 ∈ Γ(k). A
solution Q of (2.2) is uniquely determinded by Q(z) ≡ q1z (mod z2).
We can represent every possible solution Q(z) with Q(z) ≡ q1z (mod z2) by Q(z) =
q1Q

0(z) where Q0 ∈ Γ1 and Q0 is a solution of (2.2). Furthermore Q0 can be
written as Q0(z) = zQ∗(z) where Q∗ ∈ C[[z]] and Q∗(z) = 1 + . . .. We substitute
this representation of Q, namely Q(z) = q1zQ

∗(z) in (2.2) and so we get (w0 +
A(zk))q1zQ

∗(z) = w0q1zQ
∗(w0z), respectively

(2.3) (1 + w−10 A(zk))Q∗(z) = Q∗(w0z).

We know that Q∗(z) = 1+ . . . and also that (1+w−10 A(zk)) = 1+ . . . and therefore
it is possible to use the formal logarithm. Let the series F be defined by F (z) :=
Ln(1 + w−10 A(zk)) where ord F (z) ≥ 1 and let the series G be defined by G(z) :=
Ln(Q∗(z)) where ord G(z) ≥ 1. After applying the formal logarithm to (2.3) we
obtain the equation F (z) +G(z) = G(w0z), respectively

(2.4) F (z) = G(w0z)−G(z).

It is known that F (z) ∈ C[[zk]] which follows from the property that A(zk) ∈
C[[zk]] and the use of the formal logarithm. Next we use the representation of
F and G as formal power series and therefore we write F (z) =

∑∞
ν=1 ανz

ν and
G(z) =

∑∞
ν=1 γνz

ν where of course the coefficients of F are known. Substituting
the expressions of F and G in (2.4) yields

α1z + α2z
2 + . . .+ ανz

ν + . . . = γ1w0z + γ2w
2
0z

2 + . . . γνw
ν
0z
ν + . . .

− γ1z − γ2z2 − . . .− γνzν

= γ1z(w0 − 1) + γ2z
2(w2

0 − 1) + . . .

+ γνz
ν(wν0 − 1) + . . . .

After comparing the coefficients we obtain αν = γν(wν0 −1) for ν ≥ 1. The complex
number w0 is no root of unity and hence for ν ≥ 1 we get

γν = αν(wν0 − 1)−1

for the coefficients of G. Therefore the series G is uniquely determinded. Since
F (z) ∈ C[[zk]] the coefficients γν equal 0 if k does not divide ν and hence also
G(z) ∈ C[[zk]]. Reversing our calculations leads to Q∗(z) = exp(G(z)) and as
a consequence of the exponential funtion Q∗(z) ∈ C[[zk]]. Furthermore we get

Q0(z) = zQ∗(z) ∈ C(k)[[z]] ∩ Γ1 = Γ
(k)
1 , and hence

Q(z) = q1Q
0(z) ∈ Γ(k),

therefore the step is proved.
The function R−1 is defined as R−1 = Q and so also R−1(z) ∈ Γ(k) respectively
R(z) ∈ Γ(k). From our transformations we know that g has the representation
g(z) = (Sϕ̃ ◦ Rk)(z) and now we want to compute g in detail. The function R is

an element of Γ(k) and hence we can represent R as R(z) = r1z + r2k+1z
2k+1 +
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r3k+1z
3k+1 + . . .. Then we get R(z)k = rk1z

k + . . . and Sϕ̃(R(z)k) = rk1z
k + . . .. We

obtain

g(z) = Sϕ̃(R(z)k) = rk1z
k + . . . ∈ C[[zk]].

Using the representation R(z) = r1z(1 +
∑
ν≥2 r̃ν(rk1z

k)ν) for the function R where

r̃ν = r−11 rνk+1r
−νk
1 for ν ≥ 2 we get

R(z)k = rk1z
k(1 +

∑
ν≥2

r̃ν(rk1z
k)ν)k.

Defining ck and r1 as ck := rk1 and r1 := q−11 leads to

g(z) = Sϕ̃(R(z)k) = rk1z
k(1 +

∑
ν≥1

δν(rk1z
k)ν) = ckz

k(1 +
∑
ν≥1

δν(ckz
k)ν)

where the coefficient δν for ν ≥ 1 is uniquely determinded. Then we define

g̃0(y) = y(1 +
∑
ν≥1

δνy
ν) ∈ Γ1 ⊆ C[[y]],

and so we get

(2.5) g(z) = g̃0(ckz
k)

with g(z) ≡ ckzk (mod zk+1) for every solution g of (1.2). It is possible to reverse
our calculations and therefore for every ck ∈ C? we obtain a solution g(z) of the
transformed generalized Dhombres functional equation (1.2) which is defined by
(2.5). By comparing coefficients and in particular by the special representation of
g in terms of g̃0 in (2.5) we see that for every ck ∈ C? there exists exactly one
solution. �

Now we want to give a second proof of Theorem 1.1. Therefore we compute a g̃0
such that a set of solutions of (1.2) is given by

{
g|g(z) = g̃0(ckz

k), ck ∈ C?
}

. Then
we show that these are all solutions. The part of the proof where we show that the
solutions are unique is adopted from [4] Remark 3.

Second proof of Theorem 1.1. In a first step we are looking for a g̃0 ∈ Γ1 such that
for every ck ∈ C? the function g defined as g(z) := g̃0(ckz

k) is a solution of (1.2).
We substitute the representation g(z) := g̃0(ckz

k) in the transformed generalized
Dhombres functional equation

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))

and hence we get g̃0(ck(zw0 + zg̃0(ckz
k))k) = ϕ̃(g̃0(ckz

k)), respectively

g̃0(ckz
k(w0 + g̃0(ckz

k))k) = ϕ̃(g̃0(ckz
k)).

After defining y := ckz
k the equation above becomes equivalent to

g̃0(y(w0 + g̃0(y))k) = ϕ̃(g̃0(y)).

Substituting g̃−10 (y) for y leads to

g̃0(g̃−10 (y)(w0 + y)k) = ϕ̃(y).

Now we introduce a function h̃0 such that h̃0 := g̃−10 and hence after an additional
transformation we have to consider the equation

(w0 + y)kh̃0(y) = h̃0(ϕ̃(y)).
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Like in the first proof we can according to Theorem 2.1 write Sϕ̃(wk0S
−1
ϕ̃ (y)) instead

of ϕ̃ where the linearization function is denoted as Sϕ̃. After substituting this
representation of ϕ̃ in the equation above we obtain

(w0 + y)kh̃0(y) = h̃0(Sϕ̃(wk0S
−1
ϕ̃ (y))

respectively

(w0 + y)kh̃0(Sϕ̃(S−1ϕ̃ (y))) = h̃0(Sϕ̃(wk0S
−1
ϕ̃ (y))).

Then we define a function Q such that Q := h̃0 ◦ Sϕ̃ and so we get

(w0 + y)kQ(S−1ϕ̃ (y)) = Q(wk0S
−1
ϕ̃ (y)).

We substitute Sϕ̃(y) for y and hence we get

(2.6) (w0 + Sϕ̃(y))kQ(y) = Q(wk0y).

To solve (2.6) we use Q(y) = yQ∗(y) where Q∗ ∈ UC[[y]] and Q(y) = yQ∗(y) =
y(1 + q2y + . . .) as representation of Q. This representation is substituted in (2.6)
and so we get

wk0 (1 + w−10 Sϕ̃(y))kyQ∗(y) = wk0yQ
∗(wk0y)

which is equivalent to

(2.7) (1 + w−10 Sϕ̃(y))kQ∗(y) = Q∗(wk0y).

Then we have (1+w−10 Sϕ̃(y))k = 1+. . . andQ∗(y) = 1+. . . and hence we can use the

formal logarithm, we define the functions F and G as F (y) := Ln(1+w−10 Sϕ̃(y))k =

kLn(1 + w−10 Sϕ̃(y)) where we used the properties of the logarithm, respectively
G(y) := Ln(Q∗(y)). Therefore (2.6) becomes equivalent to the functional equation

(2.8) F (y) = G(wk0y)−G(y).

The uniquely determinded function Sϕ̃ has the representation Sϕ̃(y) = y + s2y
2 +

s3y
3 + . . ., and computing the function F (y) in detail leads to

F (y) = kLn(1 + w−10 Sϕ̃(y))

= kw−10 Sϕ̃(y)− kw−20 Sϕ̃(y)2

2
+
kw−30 Sϕ̃(y)3

3
− . . .

= kw−10 y + kw−10 s2y
2 + kw−10 s3y

3 + . . .− kw−20 y2

2
− . . . ∈ C[[y]].

Therefore also the function G is element of C[[y]] and, because w0 is no root of unity,
we can uniquely determine the coefficients of G from the functional equation (2.8).

Then it follows that Q∗(y) ∈ C[[y]] and hence Q(y) ∈ Γ
(1)
1 is uniquely determinded.

Therefore the same is true for h̃0 = Q ◦ S−1ϕ̃ and finally the function g̃0 is uniquely

determinded because we used the transformation g̃−10 = h̃0. Summarizing this,
results in g̃0(y) ∈ C[[y]], where g̃0(y) = y + . . . is uniquely determinded. Hence
g̃0(ckz

k) is a solution of (1.2) with g̃0(ckz
k) ≡ ckzk (mod zk+1).

It remains to show that for every ck ∈ C? there exists at most one solution g(z) ≡
ckz

k (mod zk+1) mit g(z) = g̃0(ckz
k). Let gj(z) = ckz

k+. . .+cl−1z
l−1+c

(j)
l zl+. . .,

for j = 1, 2 with l > k be solutions of (1.2) with c
(1)
l 6= c

(2)
l . Both functions, namely



REMARKS ABOUT THE GENERALIZED DHOMBRES EQUATION 7

g1 and g2 fulfill the transformed generalized Dhombres functional equation (1.2)
g(w0z + zg(z)) = ϕ̃(g(z)) and therefore we get

gj(zw0 + zgj(z)) = ck(zw0 + zgj(z)) + . . .+ cl−1(zw0 + zgj(z))
l−1

+ c
(j)
l (zw0 + zgj(z))

l + . . .

for j = 1, 2. In every bracket the term zgj(z) appears and hence the first term of

g1(z) − g2(z) which is different from zero is wl0(c
(1)
l − c

(2)
l )zl. The right hand side

of (1.2) is given by

ϕ̃(gj(z)) = wk0gj(z) + . . . = wk0ckz
k + . . .+ wk0c

(1)
l zl + . . .

and so we have

ϕ̃(g1(z))− ϕ̃(g2(z)) = wk0 (c
(1)
l − c

(2)
l )zl + . . . .

Now we compare the coefficients of zl and we use that c
(1)
l − c

(2)
l 6= 0. This leads to

wk0 = wl0 and so wl−k0 = 1 but this is a contradiction because the complex number
w0 is no root of unity and hence there exist at most one solution g for ck ∈ C?. �

3. Infinite products

In this section we investigate solutions of the generalized Dhombres functional
equation which are represented as infinite products. From Theorem 1 in [4] on page
828 it is known that if w0 6= 0 and if the function ϕ̃ is local analytic in a sufficiently
small neighbourhood of zero, then also the function g̃0 and hence the function f
are local analytic in a sufficiently small neighbourhood of zero, respectively w0. We
will use this in the proof of the following theorem.

Theorem 3.1. Let the function ϕ̃ be given by ϕ̃(y) = wk0y + . . . and let ϕ̃ be local
analytic in |y| < r with r > 0, and let the complex number w0 fulfill 0 < |w0| < 1.
Then the function g̃0 has the representation

g̃0(y) =

[
S−1ϕ̃ (y)

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
][−1]

where [−1] denotes the inverse with respect to substitution.

Proof. We iterate the equation

(2.8) F (z) +G(z) = G(wk0z)

which we obtained in the proof of the previous theorem. Firstly we assume that
(2.8) has a solution G which is analytic in |y| < r. In a first step we substitute wk0z
for z and therefore we get

F (wk0z) + F (z) +G(z) = G(w2k
0 z).

It is easy to show that by induction we get

n−1∑
ν=0

F (wνk0 y) +G(y) = G(wnk0 y).
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We know from the previous proof that G(y) is local analyic in |y| < r because ϕ̃(y)
is local analytic in a sufficiently small neighbourhood of zero and G(0) = 0. Well
known elementary estimates show that

lim
n→∞

|G(wnk0 y)| = 0

in every compact subset of |y| < r, this convergence is uniform, and hence we obtain

(3.1) G(y) = −
∞∑
ν=0

F (wνk0 y).

Now we show that (3.1) gives indeed a local analytic solution of (2.8). Using
the definition of F and similar estimates as above we see that the series on the
right hand side −

∑∞
ν=0 F (wνk0 y) of (3.1) is uniformly convergent in every compact

subset of |y| < r and also absolutely convergent. Hence, by Weierstrass’ theorem G
is analytic in |y| < r, and it is easy to check that it is a solution of (2.8). Previously
we used Q∗(y) = exp(G(y)) and hence we obtain

Q∗(y) = exp(G(y)) = exp(−
∞∑
ν=0

F (wνk0 y)) =

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 y))k

and therefore

Q(y) = y

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 y))k
.

This expression is absolutely and uniformly convergent in every compact sub-
set of |y| < r which follows from a more detailed discussion of

∑∞
ν=0 kLn(1 +

w−10 Sϕ̃(wνk0 y)). We can use the series representation of the formal loagrithm and

so it is possible to represent the term kLn(1 + w−10 Sϕ̃(wνk0 y)) as

kLn(1 + w−10 Sϕ̃(wνk0 y)) = wνk0 t1y + w2νk
0 t2y

2 + w3νk
0 t3y

3 + . . .

where the tj with j ≥ 1 are formed by w0 and by coefficients of Sϕ̃. So the statement

follows because of the term wlνk0 , l ≥ 1. In the previous proof we used Q◦S−1ϕ̃ = h̃0
and therefore we obtain

h̃0(y) = Q(S−1ϕ̃ (y)) = S−1ϕ̃ (y)

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 S−1ϕ̃ (y)))k)

where this expression is absolutely and uniformly convergent in every compact
subset of |y| < r which we want to prove now. The product is convergent, therefore
let r > 0 and ϕ̃(y) local analytic in |y| < r. Then according to Theorem 2.1 the
function Sϕ̃ is local analyic in a sufficiently small neighbourhood of zero and hence

also S−1ϕ̃ is. Therefore we obtain the absolute and uniform convergence. Next we
have to show that there exist a r̃ > 0 such that ϕ̃ν is defined for a ν ≥ 1 and
such that ϕ̃ν is local analytic in |y| < r̃. Furthermore the function ϕ̃ν(y) has to

fulfill ϕ̃ν(y) = Sϕ̃(wνk0 S−1ϕ̃ (y)) in |y| < r̃. Then as a consequence of h̃0 = g̃−10 the
assertion

g̃0(y) =

[
S−1ϕ̃ (y)

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
][−1]

,

where the convergence of the right hand side is absolute and uniform in a suffi-
ciently small neighbourhood of zero, follows. Let ϕ̃(y) be local analytic in |y| < r,
then every iterate ϕ̃ν(y), ν ∈ N starts with the term wνk0 y. Hence with the same
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arguments we used before we get that every iterate ϕ̃ν(y), ν ∈ N, is local analytic in
|y| < r. It remains to show that ϕ̃ν(y) = Sϕ̃(wνk0 S−1ϕ̃ (y)) is valid. Using induction
we know that for ν = 1 the assertion is exactly the assertion of Theorem 2.1. Then
we obtain

ϕ̃ν+1(y) = ϕ̃ν(ϕ̃(y)) = Sϕ̃(wνk0 S−1ϕ̃ (ϕ̃(y))) = Sϕ̃(wνk0 S−1ϕ̃ (Sϕ̃(wk0S
−1
ϕ̃ (y))))

= Sϕ̃(wνk0 wk0S
−1
ϕ̃ (y)) = Sϕ̃(w

(ν+1)k
0 S−1ϕ̃ (y))

and hence the theorem is proved. �

After this representation of the solution as infinite product in the sense of com-
plex analysis we want to present another representation where we use the weak
topology in the ring of formal series. We emphasize that these product represen-
tations are valid for formal solutions, and also the given ϕ̃ is understood as formal
series. For an introduction to the weak topology we refer the reader to [6] chap-
ter 22. Before we formulate the theorem we will proof a lemma. By w − lim
we denote the limit according to the weak topology. We only recall the following

fact. Let (Fn(y))n≥1 be a sequence of formal series, Fn(y) =
∑∞
ν=0 c

(n)
ν yν and

F (y) =
∑∞
ν=0 cνy

ν , then w− limn→∞ F (n) = F if and only if limn→∞ c
(n)
ν = cν , for

all ν ≥ 0.

Lemma 3.2. Let (Fn)n≥1 and (Gn)n≥1 be sequences in C[[y]] such that ord Fn ≥ 1
and ord Gn = 0 for all n ∈ N and such that w − limn→∞ Fn = F as well as
w − limn→∞Gn = G exist such that ord G ≥ 0. The function G−1n denotes the
inverse of Gn with respect to multiplication. Furthermore let Φn ∈ C[[y]] and let
w − limn→∞Φn = Φ exist. Then

(1) w − limn→∞Φn(Fn(y)) = Φ(F (y)) = Φ(w − limn→∞ Fn(y)),
(2) w − limn→∞G−1n (y) = G−1.

Proof. (1) The series Φn and Fn are given as Φn(w) = ϕ
(n)
0 +ϕ

(n)
1 w+ϕ

(n)
2 w2 + . . .

and Fn(y) = c
(n)
1 y + c

(n)
2 y2 + . . .. Then we obtain

Fn(y)l =
(
c
(n)
1

)l
yl + l

(
c
(n)
1

)l−1
c
(n)
2 yl+1 + . . .

=
(
c
(n)
1

)l
yl + . . .+Rl,µ

(
c
(n)
1 , . . . , c

(n)
µ−l+1

)
yµ + . . . ,

where Rl,µ, for µ ≥ 2 is a polynomial. The expression

Φn (Fn(y)) = ϕ
(n)
0 + ϕ

(n)
1 Fn(y) + ϕ

(n)
2 Fn(y)2 + . . .

= ϕ
(n)
0 +

∑
l≥1

ϕ
(n)
l

∑
µ≥l

Rl,µ

(
c
(n)
1 , . . . , c

(n)
µ−l+1

)
yµ


= ϕ

(n)
0 +

∞∑
µ=1

∑
l≤µ

ϕ
(n)
l Rl,µ

(
c
(n)
1 , . . . , c

(n)
µ−l+1

) yµ

follows and hence we get

lim
n→∞

∑
l≤µ

ϕ
(n)
l Rl,µ

(
c
(n)
1 , . . . , c

(n)
µ−l+1

)
=
∑
l≤µ

ϕlRl,µ (c1, . . . , cµ−l+1) .
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This means that the limit w − limn→∞Φn(Fn(y)) exists and that

w − lim
n→∞

Φn(Fn(y)) = Φ(F (y))

is true.
(2) We represent Gn and G−1n as Gn(y) = d

(n)
0 + d

(n)
1 y + . . . where d

(n)
0 6= 0 and

G−1n (y) = h
(n)
0 + h

(n)
1 y + . . .. The relation Gn(y)G−1n (y) = 1 is fulfilled and hence

d
(n)
0 h

(n)
0 = 1 which is the same as

h
(n)
0 =

1

d
(n)
0

.

The limit of d
(n)
0 for n tending to ∞ exists and is equal to d0 6= 0 therefore also h0

exists and we obtain

h0 = lim
n→∞

h
(n)
0 = lim

n→∞

1

d
(n)
0

=
1

d0
.

For j > 1 we have

h
(n)
j =

1

d
(n)
0

Pj(c
(n)
1 , . . . , c

(n)
j , h

(n)
0 , . . . , h

(n)
j−1),

where Pj denotes a polynomial. Therefore hj exists and has the form

hj =
1

d0
Pj(c1, . . . , cj , h0, . . . , hj−1).

Finally

w − lim
n→∞

G−1n (y) = G−1(y)

follows. �

Now we want to prove a theorem concerning a product representation in the weak
topology. Note that in the following theorem it is not required that the function ϕ̃
is local analytic.

Theorem 3.3. Let 0 < |w0| < 1, then g̃0 has a representation of the form

g̃0(y) =

[
S−1ϕ̃ (y)

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
][−1]

where [−1] denotes the inverse with respect to substitution and

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k = w − lim
n→∞

n∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
Proof. To prove this theorem we iterate the equation

(2.7) (1 + w−10 Sϕ̃(y))kQ∗(y) = Q∗(wk0y).

This equation we obtained in the second proof of Theorem 1.1. Remember that Sϕ̃
is according to Theorem 2.1 the unique solution of the linearization equation and
the function Q∗(y) is constructed such that Q∗(y) = 1 + q̃1y+ q̃2y

2 + . . .. In a first
iteration step we substitute wk0y for y and so we get

(1 + w−10 Sϕ̃(wk0y))k(1 + w−10 Sϕ̃(y))kQ∗(y) = Q∗(w2k
0 y).
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Inductively we obtain

n−1∏
ν=0

(1 + w−10 Sϕ̃(wνk0 y))kQ∗(y) = Q∗(wnk0 y).

Next we want to show that Q∗(wnk0 y) converges to 1 in the weak topology, if n
tends to infinity. Using the representation of Q∗ leads to

Q∗(wnk0 y) = 1 + wnk0 q̃1y + w2nk
0 q̃2y

2 + . . . .

Then for ν ≥ 1 we obtain
lim
n→∞

q̃νw
νnk
0 = 0,

and with the notation w − lim for the limit with respect to the weak topology we
get

w − lim
n→∞

Q∗(wnk0 y) = 1.

Therefore the product
∏∞
ν=0(1 + w−10 Sϕ̃(wνk0 y))k exists in the weak topology and

Q∗(y) =

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 y))k
.

Hence the solution Q∗(y) of the functional equation

(2.7) (1 + w−10 Sϕ̃(y))kQ∗(y) = Q∗(wk0y)

is uniquely given by this product, provided a solution of (2.7) exists.
In a next step we want to show that the product

∞∏
ν=0

(1 + w−10 Sϕ̃(wνk0 y))k

converges with respect to the weak topology and hence that

Q∗(y) =

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 y))k

is a solution of the functional equation (2.7). According to Lemma 3.2 it is sufficient
to prove that

∑∞
ν=0 Ln(1+w−10 Sϕ̃(wνk0 y))k exists in the weak topology. We discuss

kLn(1 +w−10 Sϕ̃(wνk0 y)) and so, if we use the series representation of the logarithm,
we obtain

kLn(1 + w−10 Sϕ̃(wνk0 y)) = k

∞∑
l=1

(−1)l−1
(w−10 Sϕ̃(wνk0 y))l

l
.

Computing this expression leads to

kLn(1 + w−10 Sϕ̃(wνk0 y)) = wνk0 (kw−10 )y + w2νk
0 (+ks2w

−1
0 − k

w−20

2
)y2

+ w3νk
0 (+ks3w

−1
0 − 2ks2

w−20

2
+ k

w−30

3
)y3 + . . . .

Now we consider the representation
∑n
ν=0

∑∞
l=1(wνk0 )lply

l, where the first summa-
tion comes from the infinite product and the second is introduced by the logarithm.
Then the equation

n∑
ν=0

∞∑
l=1

(wνk0 )lply
l =

∞∑
l=1

(
n∑
ν=0

(wνk0 )lpl

)
yl



12 LUDWIG REICH AND JÖRG TOMASCHEK

holds. The pl’s are given by p1 = kw−10 , p2 = ks2w
−1
0 − k

w−2
0

2 , p3 = ks3w
−1
0 −

2ks2
w−2

0

2 + k
w−3

0

3 , . . . , pl = kslw
−1
0 − . . .+ k

w−l
0

l for l ≥ 1 and hence we have

wνkl0 pl = +ksl(w
νk
0 )l−1 − . . .+ k

l
wνk0 = ksl(w

(l−1)k
0 )ν − . . .+ k

l
(wk0 )ν .

Now we obtain

lim
n→∞

n∑
ν=0

(wνk0 )lpl = ksl

∞∑
ν=0

(w
(l−1)k
0 )ν − . . .+ k

l

∞∑
ν=0

(wk0 )ν

where the expressions on the right hand side of the equation are by the assumption
|w0| < 1 convergent geometric series, and hence the product

∞∏
ν=0

1

(1 + w−10 Sϕ̃(wνk0 y))k

exists with respect to the weak topology and Q∗(y) =
∏∞
ν=0

1
(1+w−1

0 Sϕ̃(wνk0 y))k
is a

solution of the functional equation (2.7). Finally we reverse the transformations
which we did, namely Q(y) = yQ∗(y) and g̃−10 (y) = Q(S−1ϕ̃ (y)) and note that also

the ν − th iterate of ϕ̃ is again Sϕ̃(wνk0 S−1ϕ̃ (y)). Hence for g̃0 we get

g̃0(y) =

[
S−1ϕ̃ (y)

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
][−1]

,

where the product on the right hand side is convergent with respect to the weak
topology. �

Remark 3.4. The solutions f of the generalized Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

where f(0) = w0 and 0 < |w0| < 1 are given by

f(z) = w0 +

[
S−1ϕ̃ (y)

∞∏
ν=0

1(
1 + w−10 ϕ̃ν(y)

)k
][−1]

where we also have to take into account the different assumptions which we used
in Theorem 3.1 respectively in Theorem 3.3.

So we constructed the solutions f of the generalized Dhombres functional equa-
tion where f(0) = w0 and |w0| < 1. Above all the weak topology is not often used
and so we can ask whether there is another possibility to apply this topology in
product representations for solutions f where f(z0) = w0 and z0 6= 0?
For these considerations let us start with some transformations. We consider the
generalized Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

and we are looking for solutions f of (1.1) with f(z0) = w0. Then the function f
can be represented as f(z) = w0 + g̃(z) where the function g̃ fulfills g̃(z0) = 0 and
g̃(z) = g̃(z0 +ζ) =: g(ζ) with g(ζ) = ckζ

k+ . . ., k ≥ 1 and ζ is defined as ζ = z−z0.
Constant solutions are not of importance for us and therefore there exists a natural
number k such that ck 6= 0. The function ϕ can be written as ϕ(w) = ϕ(w0)+ ϕ̃(ω)
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with ω = w −w0 and ϕ̃(w0) = 0 and ϕ̃(y) = d1y + d2y
2 + . . .. These presentments

are substituted in (1.1) and hence after some transformations we obtain

(3.2) g((z0w0 − z0) + z0g(ζ) + ζw0 + ζg(ζ)) = ϕ̃(g(ζ)).

This equation can be treated by our formal power series methods if z0w0 − z0 = 0.
We will investigate the case where w0 = 1 and z0 6= 0. That means we are looking
for solutions f of (1.1) with f(z0) = 1 and z0 6= 0. So, after using z0w0 − z0 = 0
equation (3.2) is the same as

(3.3) g(z0g(ζ) + ζw0 + ζg(ζ)) = ϕ̃(g(ζ))

and furthermore with T (ζ)k = g(ζ) respectively ϕ̂(z)k = ϕ̃(zk) and T−1 = U we
obtain

z0ζ
k + (w0 + ζk)U(ζ) = U(ϕ̂(ζ)).

The situation where z0 6= 0 and w0 = 1 leads to

(3.4) z0ζ
k + (1 + ζk)U(ζ) = U(ϕ̃(ζ)).

Comparing coefficients of equation (3.4) indicates that the natural number k has
to be one or else we will not get a solution. Therefore we can consider

(3.5) z0ζ + (1 + ζ)U(ζ) = U(ϕ̃(ζ))

where ϕ̃(ζ) = ϕ̂(ζ) and for further calculations we will assume that ϕ̃(ζ) = d1ζ+ . . .
where the coefficient d1 is different from zero. We need the following transformation
which we fomulate as remark

Remark 3.5. Using the transformation U(ζ) = Ṽ (ζ)−z0 in (3.5) leads to the linear
functional equation

(3.6) (1 + ζ)V (ζ) = V (ϕ̃(ζ))

where Ṽ (ζ) = z0V (ζ).

Proof. Substituting Ṽ (ζ)− z0 for U(ζ) in (3.5) leads to

z0ζ + Ṽ (ζ) + ζṼ (ζ)− z0 − ζz0 = Ṽ (ϕ̃(ζ))− z0
and this is the same as

(1 + ζ)Ṽ (ζ) = Ṽ (ϕ̃(ζ)).

Writing Ṽ (ζ) = z0V (ζ) where V (ζ) = 1 + . . . results in

(1 + ζ)V (ζ) = V (ϕ̃(ζ)).

�

We get the following theorem.

Theorem 3.6. Let ϕ̃(ζ) = d1ζ + . . . be local analytic in a sufficiently small neigh-
bourhood of zero and 0 < |d1| < 1. Then the function g represented as

g(ζ) =

[
z0

∞∏
ν=0

1

(1 + Sϕ̃(dν1Sϕ̃(ζ)))
− z0

][−1]
where [−1] denotes the inverse with respect to substitution is a local analytic solution
of the functional equation

(3.3) g(z0g(ζ) + ζw0 + ζg(ζ)) = ϕ̃(g(ζ)).
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Sketch of the proof. The absolute value of the first coefficient d1 of the local analytic
function ϕ̃ is smaller than one and hence according to Theorem 2.1 there exists a
local analytic function Sϕ̃ such that ϕ̃(ζ) = Sϕ̃(d1S

−1
ϕ̃ (ζ)). We substitute this

representation of ϕ̃ in the linear functional equation

(3.6) (1 + ζ)V (ζ) = V (ϕ̃(ζ))

and so we obtain

(1 + ζ)V (ζ) = V (Sϕ̃(d1S
−1
ϕ̃ (ζ))).

Next we substitute Sϕ̃(ζ) for ζ and by W we denote the function V ◦ Sϕ̃. Hence
we get

(1 + Sϕ̃(ζ))W (ζ) = W (d1ζ)

where W (ζ) = 1 + . . .. We define the functions F and G by F (ζ) := Ln(1 +Sϕ̃(ζ))
and G(ζ) := LnW (ζ). Then the equivalent equation

F (ζ) +G(ζ) = G(d1ζ)

remains. An iteration process which is done by induction leads to

G(ζ) = −
∞∑
ν=0

F (dν1ζ)

where the absolute and uniform convergence follows, like in the proof of Theorem
3.1, from the fact that 0 < |d1| < 1. So we can reverse our transformations and
then we obtain

W (ζ) = expG(ζ) =

∞∏
ν=0

1

expF (dν1ζ)
=

∞∏
ν=0

1

1 + Sϕ̃(dν1ζ)

and because of V (ζ) = W (S−1ϕ̃ (ζ)) and Ṽ = z0V we get

Ṽ (ζ) = z0

∞∏
ν=0

1

1 + Sϕ̃(dν1S
−1
ϕ̃ (ζ))

.

For U we get

U(ζ) = z0

∞∏
ν=0

1

1 + Sϕ̃(dν1S
−1
ϕ̃ (ζ))

− z0

and hence

g(ζ) =

[
z0

∞∏
ν=0

1

1 + Sϕ̃(dν1S
−1
ϕ̃ (ζ))

− z0

][−1]
.

�

In the next theorem we consider the situation of the convergence of the product
with respect to the weak topology. Note that ϕ̃ is not necessarily convergent.

Theorem 3.7. Let ϕ̃(ζ) = d1ζ + . . . such that 0 < |d1| < 1. Then the series g
represented as

g(ζ) =

z0 ∞∏
ν=0

1(
1 + Sϕ̃(dν1S

−1
ϕ̃ (ζ))

) − z0
[−1]
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where [−1] denotes the inverse with respect to substitution is a solution of the func-
tional equation

(3.3) g(z0g(ζ) + ζw0 + ζg(ζ)) = ϕ̃(g(ζ)).

where the infinite product is understood in the weak topology,
∞∏
ν=0

1(
1 + Sϕ̃(dν1S

−1
ϕ̃ (ζ))

) = w − lim
n→∞

n∏
ν=0

1(
1 + Sϕ̃(dν1S

−1
ϕ̃ (ζ))

) .
Sketch of the proof. Like in the previous proof we can transform the equation

(3.6) (1 + ζ)V (ζ) = V (ϕ̃(ζ))

to (1 + Sϕ̃(ζ))W (ζ) = W (d1ζ) where W is defined as W (ζ) := V (Sϕ̃(ζ)). An
iteration process leads to

n−1∏
ν=0

(1 + Sϕ̃(dν1ζ))W (ζ) = W (dn1 ζ).

Then we have W (dn1 ζ) = 1 + λ1d
n
1 ζ + λ2d

n2

1 ζ2 + . . . and so the function W (dn1 ζ)
converges to one in the weak topology and we obtain necessarily

Ṽ (ζ) = z0

∞∏
ν=0

1

1 + Sϕ̃(dν1Sϕ̃−1(ζ))

if (3.6) has a solution. In order to show that there is indeed a solution, we can
again consider the logarithmic series

∑∞
ν=0 Ln(1 + Sϕ̃(dν1S

−1
ϕ̃ (ζ))) and so we get

Ln(1 + Sϕ̃(dν1S
−1
ϕ̃ (ζ))) = s̃1d

ν
1ζ + s̃2d

2ν
1 ζ

2 + s̃3d
3ν
1 ζ

3 + . . .

where we unite the coefficients of the logarithmic series and of Sϕ̃ respectively S−1ϕ̃
under the coefficients s̃ν , ν ≥ 1. We consider

∑∞
l=1 s̃l

(∑n
ν=0 d

νl
1

)
ζl and so we get

lim
n→∞

n∑
ν=0

(dl1)ν =

∞∑
ν=0

(dl1)ν

and this geometric series converges since |dl1| < 1. Hence the product converges
with respect to the weak topology. Again we obtain

g(ζ) =

z0 ∞∏
ν=0

1(
1 + Sϕ̃(dν1S

−1
ϕ̃ (ζ))

) − z0
[−1]

but now this is convergent in the weak topology. �

Remark 3.8. With respect to the different assumptions of Theorem 3.6 and Theorem
3.7 we obtain local analytic solutions f or solutions f which are convergent with
respect to the weak topology of the generalized Dhombres functional equation with
the representation

f(z) = w0 +

[
z0

∞∏
ν=0

1

(1 + Sϕ̃(dν1Sϕ̃(ζ)))
− z0

][−1]
where ζ = z − z0 and z0 6= 0.
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[2] Dhombres, J.: Some Aspects of Functional Equations, Chulalongkorn University Press,

Bangkok (1979).
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