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Abstract. We study formal solutions f of the generalized Dhombres func-
tional equation f(zf(z)) = ϕ(f(z)). In contrary to the situation where f(0) =

w0 and w0 ∈ C\E where E denotes the complex roots of 1, which were already

discussed, we investigate solutions f where f(0) = 1. To obtain solutions in
this case we use new methods which differ from the already existing ones.

1. Introduction

We study the generalized Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

in the complex domain. The function ϕ is known and we are looking for local
analytic or formal solutions f of (1.1). The original Dhombres functional equation
in the real domain is given by

f(zf(z)) = f(z)2.

This equation was first discussed by Jean Dhombres, see [2]. In the complex domain
equation (1.1) was introduced by L. Reich, J. Smı́tal and M. Štefánková in [4]. In [4]
they were looking for solutions f of (1.1) with f(0) = 0 and in the subsequent paper
[5] the authors discussed solutions f with f(0) = w0 where w0 is a complex number
different from zero and also no complex root of unity. If f(0) = 1 or more generally
f(0) = w0 and w0 6= 0 but f not constant, we can write f(z) = w0 + g(z) where
g(z) = ckz

k + ck+1z
k+1 + . . . and k ∈ N, ck 6= 0. Substituting this representation

of f in (1.1) leads to the transformed generalized Dhombres functional equation

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))

where the function ϕ̃ is computed by ϕ(y) = w0 + ϕ̃(y − w0) and hence it is given
by ϕ̃(y) = wk0y + d2y

2 + . . . which can be shown by comparing the coefficients of
(1.2).
Let us introduce some notations we will use, an introduction to formal power series
can be found in the book [1] of H. Cartan.

Definition 1.1. By

C[[z]] =
{
F |F (z) = a0 + a1z + a2z

2 + . . . , aν ∈ C, ν ≥ 0
}

we denote the set of formal power series. For a series F ∈ C[[z]] the order of F is
defined by ordF := min{ν ∈ N|aν 6= 0} and one sets ∞ for the order of the trivial
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series. We have

C[[zk]] = {F |F ∈ C[[z]], F (z) =
∑
ν≥0

aνz
ν , aν = 0 if ν 6≡ 0 (mod k)}

for k ∈ N. A series F ∈ zC[[zk]] has the representation F (z) = a1z + ak+1z
k+1 +

a2k+1z
2k+1 + . . .. We also need

Γ = {F |F ∈ C[[z]] and ord F = 1}
and (Γ, ◦) is the group of invertible formal power series with respect to substitution
◦ in C[[z]]. Then the set

Γ1 =
{
F |F ∈ Γ and F (z) ≡ z (mod z2)

}
is a subgroup of (Γ, ◦). Finally we define

C(k)[[z]] = {F |F ∈ C[[z]], F (z) =
∑
ν≥0

cνz
ν where cν = 0 if ν 6≡ 1 (mod k)}

which leads to Γ(k) = Γ∩C(k)[[z]] and Γ
(k)
1 = Γ1∩C(k)[[z]], we will also use C(k)[[z]] =

zC[[zk]]. We set C? := C \ {0}.

With this definition we can formulate the theorem which we want to prove. From
now on we are mainly interested in formal solutions f of (1.1) with f(0) = 1, or
equivalently, with formal solutions g of (1.2) which are not 0. Concerning local
analytic solutions we can only present one example at the end of the paper. It is
an open question whether the methods for constructing local analytic solutions of
certain non linear functional equations presented in [7] and [8] can be also used for
the convergence problems related to generalized Dhombres functional equations. It
should be mentioned that the results presented in Theorem 1.2 were partially used
already in [6] (Lemma 4), which is devoted to non constant polynomial solutions
of (1.1). However, in [6] Lemma 4, the existence of a non constant solution is
supposed, whereas our Theorem 1.2 gives a necessary and sufficient condition
on ϕ̃ for the existence of non constant formal solutions of (1.1) with f(0) = 1,
namely that

ϕ̃(y) = y + ky2 + . . . , k ∈ N,
holds. If ϕ̃ has this form, then in the proof of Theorem 1.2 formal solutions f with
f(0) = 1 are constructed. We mention here, without proof, that in general the
necessary and sufficient conditions on ϕ̃ for the existence of formal solutions f of
(1.1) with f(0) ∈ E are much more complicate. Hence the authors believe that the
case f(0) = 1 deserves a seperate treatment. Our proof of Theorem 1.2 is in several
places different from the rather sketching one of Lemma 4 in [6].

Theorem 1.2. Let w0 = 1 and let the formal series ϕ̃ be given by ϕ̃(y) = y+ky2 +
. . . for a k ∈ N. Then there exists a unique formal series g̃0 ∈ Γ1 such that the
set of non constant soutions g of the transformed generalized Dhombres functional
equation

(1.2) g(z + zg(z)) = ϕ̃(g(z))

in C[[z]] is given by

Lϕ̃ =
{
g|g(z) = g̃0(ckz

k), ck ∈ C?
}
.

The set Lϕ̃ is a subset of C[[zk]] and for every ck ∈ C? equation (1.2) has a unique
solution g where g(z) = ckz

k + . . ..
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Conversely, if (1.2) with ϕ̃(y) = y+ d2y
2 + . . . has a non constant solution g, then

d2 = k.

Remark 1.3. In the situation where w0 = 1 for every ck ∈ C? the generalized
Dhombres functional equation (1.1) f(zf(z)) = ϕ(f(z)) has a non constant solution

f(z) = 1 + g̃0(ckz
k)

where the formal series g̃0 is computed in accordance to Theorem 1.2.

Theorem 1.2 is the analogue to Proposition 2 in [5], which we will denote by
Proposition 1.4 and which is given by

Proposition 1.4. Let w0 be a complex number different from zero and no root
of unity, and let the formal series ϕ̃ be given by ϕ̃(y) = wk0y

k + . . . for a k ∈ N.
Then there exists a unique formal series g̃0 ∈ Γ1 such that the set of non constant
soutions g of

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))

in C[[z]] is given by

Lϕ̃ =
{
g|g(z) = g̃0(ckz

k), ck ∈ C?
}
.

Then the set Lϕ̃ is a subset of C[[zk]]. Furthermore equation (1.2) has a unique
solution g such that g(z) = ckz

k + . . ., for every ck ∈ C?.

In the case where w0 = 1 it is not possible to use the methods which are developed
in [5] to prove Proposition 2 because for w0 = 1 there does not exist a Schröder
function Sϕ̃ such that we can write ϕ̃(Sϕ̃(z)) = Sϕ̃(z). But with the approach
we use in the proof of Theorem 1.2 we will see that it is also possible to prove
Proposition 1.4.

2. Solutions f of the generalized Dhombres functional equation
where f(0) = 1

In this section we prove Theorem 1.2 and therefore let us consider the generalized
Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

where the solutions f fulfill f(0) = 1. Equation (1.1) becomes equivalent to equation
(1.2), the transformed generalized Dhombres functional equation

(1.2) g(z + zg(z)) = ϕ̃(g(z))

where we inserted w0 = 1. Next we have to do some transformation steps. For the
formal series g we substitute T k and hence we get

T (z + zT (z)k)k = ϕ̃(T (z)k).

Next we substitute T−1(z) for z and so

T (T−1(z) + T−1(z)zk)k = ϕ̃(zk)

follows. From [5] it is known that ϕ̃(z) = wk0z+d2z
2 +. . . and therefore with w0 = 1

the formal series ϕ̃ is given as ϕ̃(z) = z + . . . and hence ϕ̃(zk) = zk + . . . ∈ C[[zk]].
Taking the k − th root in the equation above leads to

T (T−1(z) + T−1(z)zk) = ψ(z),
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where we know that ψ(z) = z + . . . and from Lemma 2 in [5] that ψ(z) ∈ zC[[zk]].
We substitute U for T−1 where U(z) = u1z+ . . . and therefore we obtain the linear
functional equation

(2.1) (1 + zk)U(z) = U(ψ(z)).

We write U(z) = u1U
0(z) = u1(z+ . . .) and U0(z) = zU∗(z) where U∗(z) = 1+ . . ..

Hence we get

U(ψ(z)) = u1U
0(ψ(z)) = u1ψ(z)U∗(ψ(z)) = u1zψ

∗(z)U∗(ψ(z)),

where ψ∗(z) = 1 + . . . ∈ C[[zk]]. With these transformations the linear functional
equation (2.1) becomes equivalent to

(1 + zk)u1zU
∗(z) = u1zψ

∗(z)U∗(ψ(z)),

respectively
1 + zk

ψ∗(z)
U∗(z) = U∗(ψ(z)).

Taking the reciprocal of the series ψ∗(z) leads to

1 + zk

ψ∗(z)
=

1 + zk

1 + βzk + . . .
= 1 + αzk + . . . ∈ C[[zk]].

Hence we can introduce the formal logarithm and we write LnU∗(z) =: Y (z) and

Ln 1+zk

ψ∗(z) =: A(z). For a more detailed discussion we have to write ϕ̃(z) = z+d2z
2 +

. . . which leads to

ϕ̃(zk) = zk + d2z
2k + . . .+ dνz

νk + . . .

= zk(1 + d2z
k + . . .+ dνz

(ν−1)k + . . .) ∈ C[[zk]].

From the transformations we know that ψ(z)k = ϕ̃(zk) where ψ(z) = z + . . . and
with the binomial series we obtain

ψ(z) = z(1 + d2z
k + . . .)

1
k = z(1 +

d2

k
zk + . . .) ∈ zC[[zk]],

where ψ∗(z) = 1 + d2
k z

k + . . . ∈ C[[zk]]. Hence we know that the reciprocal of

ψ∗(z) = 1 + d2
k z

k + . . . is given by

ψ∗(z)−1 = 1− d2

k
zk + . . . ∈ C[[zk]].

So we get for the fraction 1+zk

ψ∗(z) the expression

1 + zk

ψ∗(z)
= (1 + zk)(1− d2

k
zk + . . .) = 1 + (1− d2

k
)zk + . . . ∈ C[[zk]].

Finally for A we obtain

A(z) = Ln
1 + zk

ψ∗(z)
= (1− d2

k
)zk + . . . ∈ C[[zk]].

Therefore the formal series A is known and we are looking for a solution Y of the
functional equation

(2.2) A(z) + Y (z) = Y (ψ(z)).

Let us suppose that ψ(z) = z. Then A(z) = 0 and hence 1+zk

ψ∗(z) = 1 which is

equivalent to 1 + zk = ψ∗(z). From ψ(z) = zψ∗(z) follows that z = zψ∗(z) and
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this leads to 1 + zk = 1 and this is a contradiction. So we know that ψ(z) 6= z and
hence because the first coefficient of ψ(z) is 1 we know that the formal series ψ(z)
is not linearizable.

We have to discuss the functional equation (2.2) and therefore we start with two
lemmata where the first one deals with the homogenous equation associated with
(2.2) and the second one with the inhomogenous equation (2.2).

Lemma 2.1. Let Y and ψ be formal power series with Y (z) = β1z + β2z
2 + . . .

and ψ(z) = 1 · z + . . . where ψ is not linearizable. Then the functional equation

Y (z) = Y (ψ(z))

has only the trivial solution.

Proof. We consider the equation Y (z) = Y (ψ(z)) where we know that ψ is no
linear function, that means ψ is not equal to z, and hence it is possible to embed
ψ in an iteration group (Θt)t∈C of type II. Therefore we get Y (z) = Y (Θt(z)) for
every t ∈ C. This follows from Theorem 13 on page 10 in [3]. Taking the partial
derivatives ∂

∂t on both sides we obtain

0 =
∂Y

∂X
|X=Θt(z)

∂Θt(z)

∂t
.

For t = 0 the equation

0 =
∂Y

∂z
H(z),

where H(z) denotes the generator of the iteration group, follows. The generator of
a non trivial iteration group is always different from zero and hence Y (z) = const
which results in Y (z) = 0. �

Therefore we know that the homogenous equation associated with (2.2) has only
the trivial solution. Next we want to consider the structure of the solution of the
inhomogenous equation.

Lemma 2.2. Let k ∈ N and A be given such that A(y) = aky
k + a2ky

2k + . . . ∈
C[[yk]]. Then necessarily a solution Y of the functional equation

(2.3) A(y) + Y (y) = Y (λ(y))

with λ(y) = y + . . . ∈ yC[[yk]], where λ is not linearizable, is an element of C[[yk]].

Proof. Let η be a root of unity primitive of order k. Substituting ηy for y in (2.3)
leads to

A(ηy) + Y (ηy) = Y (λ(ηy)).

Then A(ηy) is given by A(ηy) = akη
kyk + a2kη

2ky2k + . . . and hence A(ηy) = A(y)
because ηνk = 1 for every ν ≥ 1. For the series λ we obtain λ(ηy) = ηy +
λk+1ηy

k+1 + . . . and hence λ(ηy) = ηλ(y). Therefore (2.3) is equivalent to

A(y) + Y (ηy) = Y (ηλ(y))

and hence Y (ηy) is a solution of (2.3). According to Lemma 2.1 it is known that a
solution of (2.3) is uniquely determinded and so Y (y) = Y (ηy) and hence Y (y) ∈
C[[yk]]. �

With this background we can prove Theorem 1.2.
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Proof of Theorem 1.2. We consider the functional equation

(2.2) A(z) + Y (z) = Y (ψ(z)).

As a consequence of our considerations we can write

A(z) = Ln
1 + zk

ψ∗(z)
= (1− d2

k
)zk + α2kz

2k + . . .+ ανkz
νk + . . . ∈ C[[zk]]

where the coefficients ανk for ν ≥ 2 are known, and according to Lemma 2.1 and
Lemma 2.2 the series Y has the representation

Y (z) = γkz
k + γ2kz

2k + . . . ∈ C[[zk]]

as well as

ψ(z) = z(1 +
d2

k
zk + . . .) ∈ zC[[zk]].

Substituting ψ(z) in Y (z) leads to

Y (ψ(z)) = γkψ(z)k + γ2kψ(z)2k + . . .

= γk(z +
d2

k
zk+1 + . . .)k + γ2k(z +

d2

k
zk+1 + . . .)2k + . . .

= γkz
k + (kγk

d2

k
+ γ2k)z2k + . . . .

Comparing the coefficients of zk in (2.2) leads to αk + γk = γk and hence αk = 0.
The coefficient αk is given by αk = 1− d2

k and hence from 1− d2
k = 0 we get d2 = k.

Therefore the formal series ϕ̃ has the form

ϕ̃(z) = z + kz2 + . . . .

Comparing the coefficients of z2k leads to

γk =
α2k

d2
,

and hence γk is uniquely determinded. Inductively we obtain

γνk = Pvk(α(ν+1)k, γk, . . . , γ(ν−1)k)

where Pvk, ν ≥ 2 denotes a polynomial. Therefore the series Y is uniquely deter-
minded. In a next step we have to compute g̃0. Reversing our calculations leads
to

U∗(z) = exp(Y (z)) ∈ C[[zk]],

as well as

U0(z) = zU∗(z) ∈ Γ
(k)
1 = C(k)[[z]] ∩ Γ1

and hence

U(z) = u1U
0(z) ∈ Γ(k) = C(k)[[z]] ∩ Γ.

We also used T−1 = U and so T−1 ∈ Γ(k) and T ∈ Γ(k). The formal series T has
the representation T (z) = t1z + tk+1z

k+1 + t2k+1z
2k+1 + . . . and hence we write

T (z) = t1z + tk+1z
k+1 + t2k+1z

2k+1 + . . . = t1z(1 +
∑
ν≥1

t̃ν(tk1z
k)ν),

where t̃ν = t−1
1 tνk+1t

−νk
1 , for ν ≥ 1. Then

T (z)k = tk1z
k(1 +

∑
ν≥1

t̃ν(tk1z
k)ν)k
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and with ck = tk1 and t1 = u−1
1 we obtain

g(z) = T (z)k = ckz
k(1 +

∑
ν≥1

δν(ckz
k)ν)

where the coefficients δν , ν ≥ 1 are uniquely determinded. Then we can define

g̃0(y) = y(1 +
∑
ν≥1

δνy
ν) ∈ Γ1 ⊆ C[[y]],

and so we have g(z) = g̃0(ckz
k). Then, like in the proof of Proposition 2 in [5], the

transformation steps can be reversed and hence for every ck ∈ C? the series g(z)
defined by g(z) = g̃0(ckz

k) is a solution of the transformed generalized Dhombres
functional equation (1.2). For a given ck ∈ C? the solution g defined as g(z) =
g̃0(ckz

k) is unique. �

This method leads us to a new proof of Proposition 2 of [5]. Therefore we have

Remark 2.3 (An alternative proof of Proposition 1.4). If we consider the case where
w0 is a complex number different from zero and also no root of unity, then it is
always possible to transform the generalized Dhombres functional equation

(1.1) f(zf(z)) = ϕ(f(z))

and hence also the transformed generalized Dhombres functional equation

(1.2) g(w0z + zg(z)) = ϕ̃(g(z))

to the linear functional equation

(w0 + zk)U(z) = U(ψ(z))

where ψ(z) = w0z + . . .. Then it is possible to use the same methods which we
used in this section to prove Theorem 1.2. Here we do not need a linearization
function which is always needed in the known proofs. We have to mention that if
w0 ∈ C? \ E we have to embed ψ in contrary to Lemma 2.1 in an iteration group
of type I which we want to show in Lemma 2.4. The rest works similar.

Lemma 2.4. Let Y and ψ be formal power series with Y (z) = β1z + β2z
2 + . . .

and ψ(z) = w0z + . . . where w0 ∈ C? \ E. Then the functional equation

Y (z) = Y (ψ(z))

has only the trivial solution.

Proof. By induction we obtain Y (z) = Y (ψn(z)) for every n ∈ N. Then we embed
ψ in an iteration group (ψt)t∈C of type I given by ψt(z) = eλtz +

∑
ν≥2Qν(eλt)zν ,

t ∈ C where the Qν , ν ≥ 2 are polynomials and λ = logw0. Then we get

Y (ψt(z))− Y (z) =
∑
ν≥1

Rν(eλt)zν

where Rν(eλt) is a polynomial in eλt. For t ∈ N we obtain 0 = Y (ψt(z)) − Y (z)
and hence we can also show

0 = Y (ψt(z))− Y (z) =
∑
ν≥1

Rν(eλt)zν

for all t ∈ N: For every ν ≥ 0

Rν(eλn) = 0
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is valid, for all n ∈ N. The complex number w0 is no root of unity and hence λ /∈ Q,
therefore the sequence (eλn)n∈N has infinitely many values and so Rν = 0 for all
ν ≥ 0. Finally for all t ∈ C we obtain

Y (ψt(z))− Y (z) =
∑
ν≥1

Rν(eλt)zν = 0.

Then again we have

0 =
∂Y

∂X
|X=ψt(z)

∂ψt(z)

∂t
.

Substituting t = 0 leads to

0 =
∂Y

∂z
H(z)

where H(z) denotes the generator of the iteration group which is always different
from zero and hence Y (z) = 0. �

At the end we want to give an example which shows that there are also local
analytic solutions f of the generalized Dhombres functional equation where f(0) =
1.

Example 2.5. We consider the situation where k = 1 and according to Theorem
1.2 we choose ψ as ψ(z) = z+z2+z3+. . . and this ψ is local analytic in a sufficiently
small neighbourhood of zero. Solving the linear functional equation

(2.1) (1 + z)U(z) = U(ψ(z))

for u1 = 1 respectively for u1 = −1 gives us, after reversing our calculations

f(z) = 1 + z + z2 + z3 + z4 + . . .

and

f(z) = 1− z + z2 − z3 + z4 + . . .

as non constant, local analytic solutions of the generalized Dhombres functional
equation (1.1) f(zf(z)) = ϕ(f(z)).
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