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Abstract. We study the generalized Dhombres functional equation in the
complex domain, we investigate solutions in a neighbourhood of infinity. Af-

ter some transformations a characterization of those solutions which have a

complex number different from zero or infinity as value is given. Moreover the
convergence of the solutions and solutions represented as infinite product are

figured out.

Introduction

The Dhombres functional equation was introduced in the year 1975 by J. Dhom-
bres in [1]. In [2] Dhombres investigated solutions of the equation

f(xf(x)) = f(x)2

in the real domain.
In the complex domain the generalized Dhombres functional equation is given by

(0.1) f(zf(z)) = ϕ(f(z)),

where the function ϕ is known. This equation was first studied in [4]. The aim
of this paper is to investigate those solutions f of (0.1) with f(∞) = w0,
where w0 ∈ C \ {0} or f(∞) = ∞. The sections one and two deal with the
case where f(∞) = w0 and w0 ∈ C \ {0}. Therefore in the first section we start
with some transformations which lead us to new, not emerged equations in the
theory of generalized Dhombres functional equations before. After this transforma-
tions we distinguish solutions f of (0.1) belonging to various values of w0 and we
characterize the formal solutions for the different values of w0. We also iterate some
equations to obtain product solutions. The second section contains assertions on
the convergence of the before computed solutions. In the last section we deal with
those generalized Dhombres functional equations, respectively with those solutions
of the equations which are determined by f(∞) =∞.

The definitions and facts which we now give are necessary for understanding the
follwing. We define C? := C \ {0}, and when we talk about the complex num-
ber w0 we always mean that w0 ∈ C?. By E we denote the set of the com-
plex roots of one. We are interested in formal and local analytic power series
solutions of the generalized Dhombres functional equation. Therefore by C[[z]] ={
F : F (z) = β0 + β1z + β2z

2 + . . .
}

with βν ∈ C for ν ≥ 0 we denote the ring of

J. Tomaschek is supported by the National Research Fund, Luxembourg (AFR 3979497), and
cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).

1
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formal power series with usual addition, multiplication and substitution. For a
series F ∈ C[[z]], F 6= 0 the order of F is defined by

ord F := min{ν ∈ N : βν 6= 0}

and one sets∞ for the order of the trivial series. By Γ1 we define the set of all formal
power series starting with z, that means Γ1 =

{
F : F ∈ C[[z]] and F (z) ≡ z (mod z2)

}
,

which forms a group with respect to substitution. We will also often use the solution
of the Schröder functional equation. We call a series F (z) = ρz+ . . . linearizable if
there exists a series S such that the Schröder functional equation

(0.2) F (z) = S(ρS−1(z))

holds. If F is linearizable, F (z) = ρz + . . ., ρ 6= 0, it is known that there exists
exactly one S ∈ Γ1 and moreover if F is local analytic and linearizable then there
exists a local analytic S such that (0.2) holds (see [7] and [9]).
If F is not linearizable we have the following theorem (see [8] and [10]).

Theorem 0.1. Let the series F be given by F (z) = ρz+c2z
2+. . . where ρ = e2πi

m
k ,

k > 0 and gcd(m, k) = 1.

(1) There exists a T with T (z) = z + . . . such that (T−1 ◦ F ◦ T )(z) = ρz +∑
ν≥1 γνz

νk+1 ∈ zC[[zk]]. The series ρz +
∑
ν≥1 γνz

νk+1 is called semi-
canonical form of F .

(2) The semicanonical form is (in general) not uniquely determined.
(3) There exists exactely one transformation T of the form T (z) = z+

∑
ν 6≡1 (mod k) tνz

ν

such that T−1 ◦ F ◦ T is a semicanonical form.
(4) The series F is linearizable if and only if every semicanonical form of F is

linear.

1. Solutions f of f(zf(z)) = ϕ(f(z)) with f(∞) = w0 6= 0

1.1. Transformations. We consider the generalized Dhombres functional equa-
tion

(0.1) f(zf(z)) = ϕ(f(z))

for a given ϕ. In this part of the article we want to transform equation (0.1) to an
equation which is easier to handle. We also obtain a necessary and condition for
the first coefficient of the series ϕ.
Let f be holomorphic in a neighbourhood of z =∞ and let f(∞) = w0 ∈ C?. Then
we write z = 1

u where u is an element of a neighbourhood of zero and we get

f

(
1

u
f

(
1

u

))
= ϕ

(
f

(
1

u

))
.

We set f
(
1
u

)
= f̂(u), f̂ is holomorphic in a neighbourhood of u = 0. We obtain

f

(
1

u
f̂(u)

)
= ϕ

(
f̂(u)

)
where we can rewrite the left hand side, and therefore we have

f

(
1
u

f̂(u)

)
= ϕ

(
f̂(u)

)
.
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We can use the definition of the function f̂ once more on the left hand side, which
leads to

f̂

(
u

f̂(u)

)
= ϕ

(
f̂(u)

)
.

Since f̂(0) = w0 it is possible to write f̂(u) = w0 + g(u) where g is holomorphic
in a neighbourhood of zero and g(0) = 0. Substituting this in the equation above
leads to

w0 + g

(
u

w0 + g(u)

)
= ϕ(w0 + g(u)).

By putting u = 0 we obtain w0 + g(0) = ϕ(w0 + g(0)) and hence ϕ(w0) = w0.
Therefore we can represent ϕ as ϕ(y) = w0 + ϕ̃(y − w0) with ϕ̃(0) = 0. So we get
the transformed generalized Dhombres functional equation

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u)).

This equation contains as expression the fraction u
w0+g(u)

which is a new outcome

in the theory of generalized Dhombres functional equations in the complex domain.
Since we are interested in non constant solutions we write g(u) = T (u)k for a k ∈ N
and ord T = 1. Substituting this depiction of g into (1.1) causes to

T

(
u

w0 + T (u)k

)k
= ϕ̃(T (u)k),

or if we substitute T−1(u) for u

T

(
T−1(u)

w0 + uk

)k
= ϕ̃(uk).

Taking the k-th root leads to

T

(
T−1(u)

w0 + uk

)
= ψ(u)

where ψ(u)k = ϕ̃(uk), again this equation differs from the known theory because of
the fraction in the brackets. We set U = T−1 and so we obtain the linear functional
equation

(1.2) (w0 + uk)−1U(u) = U(ψ(u)).

As a reference for linear functional equations we mention the book [3]. Next we
want to determine the first coefficient of ϕ̃ and hence also of ψ. The order of T is
one, we represent T as T (u) = t1u+ . . . with t1 6= 0. Then T−1(u) = 1

t1
u+ . . . and

we get

T−1(u)

w0 + uk
=

1

w0

(
1

t1
u

)(
1 +

uk

w0

)−1
=

1

w0

1

t1
u+ . . .

which leads to

T

(
T−1(u)

w0 + uk

)
= t1

1

w0

1

t1
u+ . . . =

1

w0
u+ . . . = w−10 u+ . . . ,

or

T

(
T−1(u)

w0 + uk

)k
= w−k0 uk + . . . .
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For ϕ̃ we write ϕ̃(u) = d1u + . . . and so ϕ̃(uk) = d1u
k + . . .. Finally ϕ̃ and ψ are

given by ϕ̃(u) = w−k0 u+ . . . and ψ(u) = w−10 u+ . . ..
These considerations finish the subsection, in the following paragraphs we have to
distinguish if w0 is an element of C? \ E or if w0 is a root of one.

1.2. w0 no root of one. First let w0 be a complex number different from zero
and not a root of one. Then it is known that for ψ(u) = w−10 u+ . . . there exists a
function Sψ such that ψ(y) = Sψ(w−10 S−1ψ (y)) holds. The following theorem states
a characterization of the solutions for this case.

Theorem 1.1. Let w0 ∈ C? \ E and ϕ̃ be given by ϕ̃(u) = w−k0 u+ . . .. Then there
exists a unique function g̃0 with g̃0 ∈ Γ1 such that the non constant solutions g of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u))

in C[[u]] are given by

Lψ =
{
g : g(u) = g̃0(vku

k), vk ∈ C?
}
.

Lψ is a subset of C[[uk]] and for every vk ∈ C? exists exactly one solution g with
g(u) ≡ vkuk (mod uk+1).

Proof. From the previous subsection we know that the transformed generalized
Dhombres functional equation (1.1) can be equivalently written as linear functional
equation (1.2). In (1.2) we use the linearization of ψ and therefore (1.2) becomes
equivalent to (w0 + Sψ(u)k)−1U(Sψ(u)) = U(Sψ(w−10 u)). Defining V := U ◦ Sψ
leads to

(w0 + Sψ(u)k)−1V (u) = V (w−10 u).

By using V (u) = v1u+ . . . = v1uV
?(u) where V ?(u) = 1 + . . . we obtain

(1.3) (1 + w−10 Sψ(u)k)−1V ?(u) = V ?(w−10 u).

All terms start with one and hence we can use the formal logarithm. We set
A(u) = −Ln(1 + w−10 Sψ(u)k) and X(u) = Ln(V ?(u)) and so the equation

(1.4) A(u) +X(u) = X(w−10 u)

remains. We represent the series A and X as A(u) = α1u+α2u
2 + . . . and X(u) =

γ1u+ γ2u
2 + . . .. By comparing the coefficients we obtain

(1.5) γν = (w−ν0 − 1)−1αν

for ν ∈ N. Hence the series X is uniquely determined. Then V ? is given by
V ?(u) = exp(X(u)) and therefore

V (u) = v1u exp(X(u)).

This leads to

U(u) = v1Sψ(u) exp(X(Sψ(u)))

and hence T (u) = v−11 u+ . . .. Now, because g(u) = T (u)k we can write

(1.6) g(u) = ṽk1u
k + . . . = ṽk1u

k(1 + . . .) = g̃0(vku
k).

Therefore there exists exactly one function g̃0 such that all solutions g can be
written in the form (1.6). �
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Remark 1.2. If we write vku
k = yk for vk ∈ C?, k ∈ N, then all solutions f of (0.1)

are given by

f(yk) = w0 + g̃0

(
1

yk

)
.

Next we want to describe the solutions f of (0.1) as an infinite product. We
already have investigated infinite products in [6]. The major difference to the case
described in [6] is that we now consider the fixed value w0 where |w0| > 1 instead
of |w0| < 1. We prove the following lemma.

Lemma 1.3. Let |w0| > 1 and let ψ be given by ψ(u) = w−10 u+ . . ., local analytic
for |u| < r for some r > 0 and ψ(u) = Sψ(w−10 S−1ψ (u)) where Sψ(u) = u + . . ..
Then for every v1 ∈ C? the function

g(u) =

[v1S−1ψ (u)

∞∏
ν=0

(
1 + w−10 (ψν (u))

k
)][−1]k

is a solution of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u)).

Proof. We iterate the equation

(1.3) (1 + w−10 Sψ(u)k)−1V ?(u) = V ?(w−10 u),

and therefore in the first iteration step we substitute w−10 u for u, we obtain

(1 + w−10 Sψ(w−10 u)k)−1(1 + w−10 Sψ(u)k)−1V ?(u) = V ?(w−20 u).

By induction we get

n−1∏
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)−1
V ?(u) = V ?(w−n0 u).

The series V ? is given by V ?(u) = 1 + ṽ1u+ ṽ2u
2 + . . . and hence

lim
n→∞

∣∣V ? (w−n0 u
)∣∣ = lim

n→∞

∣∣1 + ṽ1w
−n
0 u+ ṽ2w

−2n
0 u2 + . . .

∣∣ = 1.

Therefore if equation (1.3) has a solution, we obtain

∞∏
ν=0

1(
1 + w−10 Sψ(w−ν0 u)k

)−1 = V ?(u),

or

V ?(u) =

∞∏
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)
as a local analytic solution. On the other hand, if we consider

∏n−1
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)
we see, because Sψ is local analytic and |w0| > 1, that this expression is local ana-
lytic. But then also

V (u) = v1u

n−1∏
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)
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and because of U = V ◦ S−1ψ ,

U(u) = v1S
−1
ψ (u)

n−1∏
ν=0

(
1 + w−10 Sψ(w−ν0 S−1ψ (u))k

)
are local analytic. An induction, for example see [6], shows that ψν(u) = Sψ(w−ν0 S−1ψ (u)),
and so

U(u) = v1S
−1
ψ (u)

n−1∏
ν=0

(
1 + w−10 ψν(u)k

)
.

The inverse of U with respect to substitution is the function T and g(u) = T (z)k,
so we get

g(u) =

[v1S−1ψ (u)

∞∏
ν=0

(
1 + w−10 (ψν (u))

k
)][−1]k

,

where the function g is local analytic in some neighbourhood of zero. �

The product solutions of the generalized Dhombres functional equation for a
convergent ψ are summarized in the following theorem.

Theorem 1.4. Let |w0| > 1 and ψ be given by ψ(u) = w−10 u + . . ., local analytic
for |u| < r for some r > 0 and ψ(u) = Sψ(w−10 S−1ψ (u)) where Sψ(u) = u + . . ..
Then for every v1 ∈ C?

f(u) = w0 +

[v1S−1ψ (
1

u

) ∞∏
ν=0

(
1 + w−10

(
ψν
(

1

u

))k)][−1]k

where [−1] denotes the inverse with respect to substitution, is a solution of

(0.1) f(zf(z)) = ϕ(f(z))

with f(∞) = w0.

Proof. The proof of this theorem immediately follows from Lemma 1.3. We only

have to finish all of our previous transfomations. Therefore we recall that f̂(u) =

w0 + g(u) and f̂(u) = f
(
1
u

)
. Hence f(u) = f̂

(
1
u

)
and so we obtain

f(u) = w0 +

[v1S−1ψ (
1

u

) ∞∏
ν=0

(
1 + w−10

(
ψν
(

1

u

))k)][−1]k

.

�

We can also consider solutions represented as infinite product according to the
weak topology. Therefore we have the following theorem, where the function ψ
does not need to be convergent. For a definition and other useful properties of the
weak topology we refer the reader to [6].

Theorem 1.5. Let |w0| > 1 and let ψ be given by ψ(u) = w−10 u+ . . ., and ψ(u) =
Sψ(w−10 S−1ψ (u)) where Sψ(u) = u+ . . .. Then for every v1 ∈ C? the function

g(u) =

[v1S−1ψ (u)

∞∏
ν=0

(
1 + w−10 (ψν (u))

k
)][−1]k
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is a solution of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u)),

where the infinite product converges according to the weak limit
∞∏
ν=0

(
1 + w−10 (ψν (u))

k
)

= w − lim
n→∞

n∏
ν=0

(
1 + w−10 (ψν (u))

k
)
.

The solutions f of (0.1) depend on the parameter v1 and are given by

f(u) = w0 +

[v1S−1ψ (
1

u

) ∞∏
ν=0

(
1 + w−10

(
ψν
(

1

u

))k)][−1]k

.

Proof. Once more we consider the equation

(1.3) (1 + w−10 Sψ(u)k)−1V ?(u) = V ?(w−10 u),

which we iterate, therefore we know that we get

n−1∏
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)−1
V ?(u) = V ?(w−n0 u).

The series V ? is given by V ?(u) = 1 + ṽ1u+ ṽ2u
2 + . . . and hence

w − lim
n→∞

V ?
(
w−n0 u

)
= lim
n→∞

(1 + ṽ1w
−n
0 u+ ṽ2w

−2n
0 u2 + . . .) = 1.

Therefore, if equation (1.3) has a solution, again we obtain

V ?(u) =

∞∏
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)
as solution. Otherwise we have to show that

∏∞
ν=0

(
1 + w−10 Sψ(w−ν0 u)k

)
is conver-

gent according to the weak topology. It is sufficient, see [6], to show that the weak
limit of

∑n
ν=0 Ln

(
1 + w−10 Sψ(w−ν0 u)k

)
exists, for n→∞. This follows immediately

form the representation

(1.7) Ln
(
1 + w−10 Sψ(w−ν0 u)k

)
=

∞∑
l=1

(−1)l−1
(
1 + w−10 Sψ(w−ν0 u)k

)l
l

,

because we can order the right hand side of (1.7) with respect of um, m ∈ N and
we observe, that to the coefficient of every um there belongs a term of the form
w−µ0 with µ ≥ m. Therefore the right hand side is convergent according to the
weak topology, because every coefficient belongs to a geometric series. Reversing
our transformations lead to the above given functions g and f . �

1.3. w0 is a primitive root of one of order l. For the second case let w0 be a
primitive root of unity of order l ∈ N. Then also w−10 is a root of unity of order l.
From the linear functional equation (1.2) the equivalent expression

w−10 u(1 + w−10 uk)−1

ψ(u)
U?(u) = U?(ψ(u))

or
1

(1 + w−10 uk)ψ?(u)
U?(u) = U?(ψ(u))
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follows, where U?(u) = 1 + . . . and ψ?(z) = 1 + . . .. Then we use the formal
logarithm, we write A(u) = Ln 1

(1+w−1
0 uk)ψ?(u)

and X(u) = LnU?(u). Therefore we

obtain

(1.8) A(u) = X(ψ(u))−X(u).

Next we distinguish the cases where ψ is linearizable and where it is not. Note that
the function ϕ̃ is linearizable if and only if the function ψ is.
Let ψ be linearizable. Then there exists a minimal m ∈ N such that ψm(u) = u.
This is clear, because since ψ is linearizable there exists a unique function Sψ,
Sψ(u) = u+ . . . such that

(1.9) ψ(u) = Sψ(w−10 S−1ψ (u))

holds. Then if we iterate this expression l times we get ψl(u) = Sψ(w−l0 S−1ψ (u)) =

Sψ(S−1ψ (u)) = u and hence l is the minimal natural number such that ψm(u) = u.
holds.

Theorem 1.6. Let w0 be a root of one primitive of order l ≥ 2 and ψ(u) =
w0u+ . . ., and let ψ be linearizable with ψ(u) = Sψ(w0S

−1
ψ (u)). Then the equation

(1.8) A(u) = X(ψ(u))−X(u)

has a solution if and only if a certain infinite system of algebraic relations for the
coefficients of Sψ is satisfied. This infinite system is denoted by (1.12). If this is
the case the general solution of

(1.2) (w0 + uk)−1U(u) = U(ψ(u))

is given by

U(u) = v1S
−1
ψ (u)exp(X(u))

where X = Y ◦ S−1ψ is given by

X(u) = Y (S−1ψ (u)) =

 ∑
ν≥1

ν 6≡0(mod l)

s̃ν

w−ν0 − 1
uν +

∑
ν≥1

δνlu
νl


where the terms s̃ν for ν ≥ 1 and ν 6≡ 0(mod l) are computed from the coefficients
of Sψ and where the coefficients δνl for ν ≥ 1 are arbitrary.

Proof. We iterate (1.8) by substituting ψ(u) for u. This leads to

A(ψ(u)) = X(ψ(u))−A(u)−X(u),

by induction we obtain

l−1∑
j=0

A(ψj(u)) = X(ψl(u))−X(u),

or
l−1∑
j=0

A(ψj(u)) = 0.
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Here we substitute the representation of ψ given by the linearization function (1.9).
Hence we obtain

(1.10)

l−1∑
j=0

A(Sψ(w−j0 u)) = 0.

We define Z(u) =
∑l−1
j=0A(Sψ(w−j0 u)), then

Z(w−10 u) = Z(u).

Therefore Z(u) ∈ C[[ul]] and we can write

(1.11) Z(u) =
∑

ν≡0 (mod l)
ν≥1

γνu
ν .

As a consequence of (1.10) and (1.11) the series Sψ(u) = u+s2u
2+. . . =

∑
ν≥1 sνu

ν

has to fulfill the polynomial system

(1.12) sµl = Pµ(s1, . . . , sµl−1), µ ≥ 1.

In the last step we substitute the representation of ψ, namely (1.9) in (1.8), then
we get

(1.13) A(Sψ(u)) = X(Sψ(w−10 u))−X(Sψ(u)).

By B(u) we address the series A(Sψ(u)) and by Y (u) the series X(Sψ(u)), we write
B(u) =

∑
ν≥ βνu

ν and Y (u) =
∑
ν≥1 γνu

ν . From (1.13) we obtain

(1.14) B(u) = Y (w−10 u)− Y (u).

Equation (1.14) leads to the special solution

γν =
βν

w−ν0 − 1

for ν ≥ 1, ν 6= µl for l ≥ 1. Then the general solution of (1.8) is given by

X(u) = Y (S−1ψ (u)) =

 ∑
ν≥1

ν 6≡0(mod l)

s̃ν

w−ν0 − 1
uν +

∑
ν≥1

δνlu
νl

 .
�

Let ψ be non linearizable, then as mentioned in the introduction, there exists a
unique function T ∈ C[[u]], T (u) = u+ . . . such that

(1.15) T−1(ψ(T (u))) = w−10 u+
∑
ν≥m

γνu
νl+1,

where Nψ(u) = w−10 u+
∑
ν≥m γνu

νl+1, γm 6= 0 is called a semicanonical form of ψ
and m ∈ N.

Theorem 1.7. Let w0 be a root of one primitive of order l ≥ 1 and let ψ(z) =
w0u + . . . be not linearizable, and hence ψ(u) = (T−1 ◦ N ◦ T )(u) where N is a
semicanonical form of ψ. Then the equation

(1.2) (w0 + uk)−1U(u) = U(ψ(u))
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has a unique solution, for a given v1 if and only if a certain system of finitely many
polynomial relations for the coefficients of T is satisfied.

Proof. Again we consider the equation

(1.8) A(u) = X(ψ(u))−X(u)

where we substitute the representation T (Nψ(T−1(u))) for ψ(u), then we get

A(u) = X(T (Nψ(T−1(u))))−X(u)

and hence

A(T (u)) = X(T (Nψ(u)))−X(T (u)).

We define B(u) = A(T (u)) =
∑
ν≥1 βνu

ν and Y (u) = X(T (u)) =
∑
ν≥1 δνu

ν .
Therefore the equation above is equivalent to

(1.16) B(u) = Y (Nψ(u))− Y (u).

By Lemma 1 in [10] we can compute the series Y (Nψ(u))− Y (u), it starts with

Y (Nψ(u))− Y (u) = δ1(w−10 − 1)u+ δ1(w−20 − 1)u2 + . . .+ δl(w
−l
0 − 1)ul + . . .

+ (δ1γ(m+1)l + δllw
−1
0 γml+1 + δ(m+1)l − δ(m+1)l)u

(m+1)l + . . . .

By comparing the coefficients we obtain δ1 = β1

w−1
0 −1

, δ2 = β2

w−2
0 −1

and so on. If we

compare the coefficients of zl we get βl = δl − δl. Since this βl originates from the
coefficients of T this is the first polynomial relation for the coeffcients of T which
has to be fufilled. We obtain the other l − 1 polynomial relations if we compare
the coefficients of z2l, . . . , zml. The coefficient δl can be determined by comparing

the coefficients of u(m+1)l, we obtain δl =
β(m+1)l−δ1γ(m+1)l

lw−1
0 γml+1

. By induction the

coefficients of Y are uniquely determined. By reversing our calculations we obtain
the claim. �

To obtain solutions of the generalized Dhombres functional equation (0.1) we
have to reverse the transformation steps from (0.1) to the linear functional equation
(1.2). So the solutions U which we compute in Theorem (1.6) and (1.7) can be
transformed back such that they are solutions of (0.1).

2. Local analytic solutions f of f(zf(z)) = ϕ(f(z)) with f(∞) = w0 6= 0

In this section we want to discuss the convergence of the solutions which are not
represented as a product. We start with the case where |w0| 6= 0, 1. Then we have
the following theorem.

Theorem 2.1. Let |w0| 6= 0, 1 and let ϕ̃(u) = w−k0 u + . . . be local analytic for
|u| < r, r > 0. Then all solutions g of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u))

are local analytic in a sufficiently small neighbourhood of zero. Equally all solutions
f with f(∞) = w0 of

(0.1) f(zf(z)) = ϕ(f(z))

are local analytic in a neighbourhood of infinity.
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Proof. Let |w0| 6= 0, 1 and let ϕ̃(u) = w−k0 u + . . . be local analytic for |u| < r,
r > 0. Then also ψ(u) is local analytic in a sufficiently small neighbourhood of

zero, because ψ(u) = ϕ̃(uk)
1
k . If ψ is local analytic, then also the Schröder function

Sψ in the representation

ψ(u) = Sψ(w−10 S−1ψ (u))

is local analytic. In the proof of Theorem 1.1 we obtain the equation

(1.4) A(u) +X(u) = X(w−10 u)

where the series A(u) = α1u+ α2u
2 + . . . is known. From this proof we also know

that the coefficients of the series X(u) = γ1u+ γ2u
2 + . . . compute as follows

(1.5) γν = (w−ν0 − 1)−1αν

for ν ∈ N. Since the absolute value of w0 is not one there exists a number C > 0
such that

(2.1)
∣∣w−ν0 − 1

∣∣−1 ≤ C.
for all ν ∈ N. Then we have

|γν | ≤ C |αν |
for all ν ∈ N. Hence X and also V (u) = v1u exp(X(u)), which depends on the
arbitrary parameter v1, are local analytic in a sufficiently small neighbourhood of
zero. By using elementary facts about holomorphic functions we obtain that

g(u) = T (u)k =
(
U−1(u)

)k
=
[
(v1Sψ(u) exp(X(Sψ(u))))−1

]k
is local analytic in a sufficiently small neighbourhood of zero, for every parameter
v1 ∈ C \ {0}. The function f is defined as f(z) = w0 + g

(
1
z

)
and therefore f is

local analytic in a sufficiently small neighbourhood of infinity. �

In the next theorem we consider the case where w0 is a Siegel number, that is
a number which can be represented by w0 = e2πiα with α ∈ [0, 1) and for this α
the following is true. There exist ε, µ greater than zero such that for all n ∈ N and
m ∈ Z

(2.2) |nα−m| > εn−µ

holds. This definition also implies that |w0| = 1. First we want to show that the
inequality (2.2) also holds for w−10 .

Remark 2.2. If w0 is a Siegel number, then (2.2) also holds for w−10 .

Proof. We write w−10 = e2πi(−α) and then we get

|n(−α)−m| = |−nα−m| = |−1||nα+m| > εn−µ

since (2.2) holds for all m ∈ Z. �

After showing that this remark hold, we see that the proof of the following
theorem is essentially the same as the proof in Section 3 in [5].

Theorem 2.3. Let w0 be a Siegel number and let ϕ̃(u) = w−k0 u + . . . be local
analytic for |u| < r, r > 0. Then all solutions g of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u))
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are local analytic in a sufficiently small neighbourhood of zero. Equally all solutions
f with f(∞) = w0 of

(0.1) f(zf(z)) = ϕ(f(z))

are local analytic in a neighbourhood of infinity.

Proof. Like in the previous proof we consider again the coefficient representation
of a solution X(u) = γ1u+ γ2u

2 + . . . of (1.4)

(1.5) γν = (w−ν0 − 1)−1αν

for ν ∈ N. Then according to the theory of Siegel numbers, which is given in [9],
there exists a µ > 0 such that ∣∣w−10 − 1

∣∣−1 < (2ν)µ

for n ∈ N holds. Then we have

|γν | < (2ν)µ |αν |
for n ∈ N. For δ > 1 there exists a n0 ∈ N such that (2ν)µ < δν for ν > n0. Since
the αν

′s belong to a convergent series there exists a β > 0 such that for all ν > n0

|αν | < βν .

Then we have

|γν | < (δβ)ν

for all ν > n0 and hence the series X is local analytic in a sufficiently small neigh-
bourhood of zero. The remaining reversing steps are the same as in the proof of
the previous theorem. �

The proof of the last theorem in this section depends on [7]. There it is shown
that if ψ(u) = w−10 u + . . ., where w−10 is a root of one and ψ is linearizable, then
there exists a convergent series Sψ with ψ(u) = Sψ(w−10 S−1ψ (u)). We have the

following theorem which has its analogue in [10].

Theorem 2.4. Let w0 be a root of one and let ϕ̃(u) = w−k0 u+ . . . be local analytic
for |u| < r, r > 0. Then there exist local analytic solutions g of

(1.1) g

(
u

w0 + g(u)

)
= ϕ̃(g(u))

in a sufficiently small neighbourhood of zero. Then there also exist solutions f with
f(∞) = w0 of

(0.1) f(zf(z)) = ϕ(f(z))

which are local analytic in a neighbourhood of infinity.

Proof. Let the series ϕ̃ be local analytic, then also the series ψ is local analytic.
We investigate the equation

(1.14) B(u) = Y (w−10 u)− Y (u)

from the proof of Theorem 1.6. If ψ is local analytic, then also the series B on the
left hand side of (1.14) is local analytic, which is a consequence of the representation

B(u) = A(Sψ(u)) = Ln

(
1

(1 + w−10 Sψ(u)k)ψ?(u)

)
.
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It is clear that ψ? is convergent, from [7] we know that there exists a convergent
series Sψ. But then also the solution

Y (u) =
∑
ν≥1

ν 6≡0(mod l)

s̃ν

w−ν0 − 1
uν +

∑
ν≥1

δνlu
νl

is local analytic because the first sum is obtained from the composition of local
analytic series and in the second sum we can choose the coefficients such that Y is
local analytic. The claim of the theorem follows from reversing the transformations.

�

3. Formal and local analytic solutions f of f(zf(z)) = ϕ(f(z)) with
f(∞) =∞

In this section we want to consider solutions f of the generalized Dhombres
functional equation (0.1) where f(∞) = ∞. We will immediately see that after
we apply some transformations we get a well known equation where the solutions
which we want to determine have a very useful fixed point.
Let u be given in a neighbourhood of zero, then we use again z = 1

u . Hence (0.1)
becomes equivalent to

f

(
1

u
f

(
1

u

))
= ϕ

(
f

(
1

u

))
,

or

f

(
1

u

1

f
(
1
u

)) = ϕ

(
1

f
(
1
u

)) .
Then we define h(u) = 1

f( 1
u )

and so we have h(0) = 1
∞ = 0. Substituting h in the

equation above leads to

f

(
1

u

1

h(u)

)
= ϕ

(
1

h(u)

)
.

We can transform this equation to

1
1

f(uh(u))

= ϕ

(
1

h(u)

)
and hence we obtain

1

h(uh(u))
= ϕ

(
1

h(u)

)
.

In this equation we set u = 0 and so we get 1
h(0) = ϕ

(
1

h(0)

)
and therefore ϕ(∞) =

∞. So we can define ϕ̃(u) = 1

ϕ( 1
u )

which is the same as 1
ϕ̃(u) = ϕ

(
1
u

)
and we have

ϕ̃(0) = 0. Finally we obtain

1

h(uh(u))
=

1

ϕ̃(h(u))
or

(3.1) h(uh(u)) = ϕ̃(h(u)).

Equation (3.1) is a generalized Dhombres functional equation for a given ϕ̃ and
for an unknown function h with h(0) = 0. The case where h(0) = 0 is completely
solved in [4]. We can use the same techniques as in [4], namely the transformations
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h(u) = T (u)k and ϕ̃(uk) = ψ(u)k to obtain the generalized Böttcher functional
equation

ukU(u) = U(ψ(u)).
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